91 research outputs found

    Salivary Metabolomics:From Diagnostic Biomarker Discovery to Investigating Biological Function

    Get PDF
    Metabolomic profiling of biofluids, e.g., urine, plasma, has generated vast and ever-increasing amounts of knowledge over the last few decades. Paradoxically, metabolomic analysis of saliva, the most readily-available human biofluid, has lagged. This review explores the history of saliva-based metabolomics and summarizes current knowledge of salivary metabolomics. Current applications of salivary metabolomics have largely focused on diagnostic biomarker discovery and the diagnostic value of the current literature base is explored. There is also a small, albeit promising, literature base concerning the use of salivary metabolomics in monitoring athletic performance. Functional roles of salivary metabolites remain largely unexplored. Areas of emerging knowledge include the role of oral host–microbiome interactions in shaping the salivary metabolite profile and the potential roles of salivary metabolites in oral physiology, e.g., in taste perception. Discussion of future research directions describes the need to begin acquiring a greater knowledge of the function of salivary metabolites, a current research direction in the field of the gut metabolome. The role of saliva as an easily obtainable, information-rich fluid that could complement other gastrointestinal fluids in the exploration of the gut metabolome is emphasized

    Developing and Standardizing a Protocol for Quantitative Proton Nuclear Magnetic Resonance ( <sup>1</sup> H NMR) Spectroscopy of Saliva

    Get PDF
    Metabolic profiling by <sup>1</sup>H NMR spectroscopy is an underutilized technology in salivary research, although preliminary studies have identified promising results in multiple fields (diagnostics, nutrition, sports physiology). Translation of preliminary findings into validated, clinically approved knowledge is hindered by variability in protocol for the collection, storage, preparation, and analysis of saliva. This study aims to evaluate the effects of differing sample pretreatments on the <sup>1</sup>H NMR metabolic profile of saliva. Protocol considerations are highly varied in the current literature base, including centrifugation, freeze–thaw cycles, and different NMR quantification methods. Our findings suggest that the <sup>1</sup>H NMR metabolite profile of saliva is resilient to any change resulting from freezing, including freezing of saliva prior to centrifuging. However, centrifugation was necessary to remove an unidentified broad peak between 1.24 and 1.3 ppm, the intensity of which correlated strongly with saliva cellular content. This peak obscured the methyl peak from lactate and significantly affected quantification. Metabolite quantification was similar for saliva centrifuged between 750<i>g</i> to 15 000<i>g</i>. Quantification of salivary metabolites was similar whether quantified using internal phosphate-buffered sodium trimethylsilyl-[2,2,3,3-<sup>2</sup>H<sub>4</sub>]-propionate (TSP) or external TSP in a coaxial NMR tube placed inside the NMR tube containing the saliva sample. Our results suggest that the existing literature on salivary <sup>1</sup>H NMR will not have been adversely affected by variations of the common protocol; however, use of TSP as an internal standard without a buffered medium appears to affect metabolite quantification, notably for acetate and methanol. We include protocol recommendations to facilitate future NMR-based studies of saliva

    Endogenous salivary citrate is associated with enhanced rheological properties following oral capsaicin-stimulation

    Get PDF
    NEW FINDINGS: What is the central question of this study? What are the relationships between physical properties of saliva, protein composition and metabolite composition? What is the main finding and its importance? Salivary citrate, one of the major endogenous metabolites in saliva, increased upon capsaicin stimulation and was associated with improved physical properties measured by extensional rheology. This suggests salivary gland citrate transporters might be a valuable area of future study.ABSTRACT: Saliva displays viscoelastic properties which enable coating, lubrication and protection of the oral mucosa and hard tissues. Individuals lacking saliva or perceiving oral dryness can manage their symptoms using artificial saliva preparations, but these often fail to mimic the sensation and functionality of natural saliva. It is widely acknowledged that mucins (MUC7 and MUC5B) confer saliva's rheological properties, but artificial saliva containing purified mucins is still often an inadequate substitute. This work aimed to explore salivary components that influence salivary extensional rheology to better understand how natural saliva could be replicated. Saliva was stimulated via control and capsaicin solutions in healthy volunteers. Extensional rheology was analysed using a CaBER-1 (capillary breakup) extensional rheometer. Protein composition, including mucins, was measured by gel-electrophoresis band densitometry and metabolites were measured by 1 H nuclear magnetic resonance spectroscopy. Capsaicin stimulation significantly increased capillary breakup time, extensional viscosity and the abundance of most major salivary proteins. Stimulation also increased salivary citrate and choline concentrations. Significant correlations were found between capillary breakup time and amylase (r = 0.67, P &lt; 0.05), statherin (ρ = 0.66, P &lt; 0.05) and citrate (ρ = 0.81, P &lt; 0.01). The relationship between citrate and salivary rheology was subsequently investigated in vitro. These results suggest that citrate and non-mucin proteins are stronger predictors of salivary rheology than the more often studied mucin glycoproteins. Potential mechanisms are discussed and future work in this area could help formulate more effective saliva substitutes, more closely resembling natural saliva.</p

    Determining bacterial and host contributions to the human salivary metabolome

    Get PDF
    BACKGROUND: Salivary metabolomics is rapidly advancing. AIM AND METHODS: To determine the extent to which salivary metabolites reflects host or microbial metabolic activity whole-mouth saliva (WMS), parotid saliva (PS) and plasma collected contemporaneously from healthy volunteers were analysed by (1)H-NMR spectroscopy. Spectra underwent principal component analysis and k-means cluster analysis and metabolite quantification. WMS samples were cultured on both sucrose and peptide-enriched media. Correlation between metabolite concentration and bacterial load was assessed. RESULTS: WMS contained abundant short-chain fatty acids (SCFAs), which were minimal in PS and plasma. WMS spectral exhibited greater inter-individual variation than those of PS or plasma (6.7 and 3.6 fold, respectively), likely reflecting diversity of microbial metabolomes. WMS bacterial load correlated strongly with SCFA levels. Additional WMS metabolites including amines, amino acids and organic acids were positively correlated with bacterial load. Lactate, urea and citrate appeared to enter WMS via PS and the circulation. Urea correlated inversely with WMS bacterial load. CONCLUSIONS: Oral microbiota contribute significantly to the WMS metabolome. Several WMS metabolites (lactate, urea and citrate) are derived from the host circulation. WMS may be particularly useful to aid diagnosis of conditions reflective of dysbiosis. WMS could also complement other gastrointestinal fluids in future metabolomic studies

    Low Cerebrospinal Fluid Levels of Melanotransferrin Are Associated With Conversion of Mild Cognitively Impaired Subjects to Alzheimer’s Disease

    Get PDF
    The disruption of iron metabolism and iron transport proteins have been implicated in the pathogenesis of Alzheimer’s disease (AD). Serum melanotransferrin (MTf), a transferrin homolog capable of reversibly binding iron, has been proposed as a biochemical marker of AD. MTf has also been shown to be elevated in iron-rich reactive microglia near amyloid plaques in AD. We examined the association of CSF MTf to hippocampal volumes and cognitive tests in 86 cognitively normal, 135 mild cognitive impairment (MCI) and 66 AD subjects. CSF was collected at baseline for MTf, Aβ, total-tau and phosphorylated-tau measurements. Serial cognitive testing with ADAS-Cog13, Rey’s auditory visual learning test (RAVLT), mini-mental state examination (MMSE) were performed alongside hippocampal MRI volumetric analysis for up to 10 years after baseline measurements. High levels of baseline CSF MTf were positively associated with baseline hippocampal volume (R2 = 22%, β = 0.202, and p = 0.017) and RAVLT scores (R2 = 7.30%, β = -0.178, and p = 0.043) and negatively correlated to ADAS-Cog13 (R2 = 17.3%, β = 0.247, and p = 0.003) scores in MCI subjects. Interestingly, MCI subjects that converted to AD demonstrated significantly lower levels of CSF MTf (p = 0.020) compared to MCI non-converters at baseline. We suggest the diminished CSF MTf observed in MCI-converters to AD may arise from impaired transport of MTf from blood into the brain tissue/CSF and/or increased MTf export from the CSF into the blood arising from attenuated competition with reduced levels of CSF Aβ. Further investigations are required to determine the source of CSF MTf and how brain MTf is regulated by cellular barriers, Aβ and activated microglia that surround plaques in AD pathophysiology. In conclusion, low CSF MTf may identify those MCI individuals at risk of converting to AD

    Automatic quantification of abdominal subcutaneous and visceral adipose tissue in children, through MRI study, using total intensity maps and Convolutional Neural Networks

    Full text link
    Childhood overweight and obesity is one of the main health problems in the world since it is related to the early appearance of different diseases, in addition to being a risk factor for later developing obesity in adulthood with its health and economic consequences. Visceral abdominal tissue (VAT) is strongly related to the development of metabolic and cardiovascular diseases compared to abdominal subcutaneous adipose tissue (ASAT). Therefore, precise and automatic VAT and ASAT quantification methods would allow better diagnosis, monitoring and prevention of diseases caused by obesity at any stage of life. Currently, magnetic resonance imaging is the standard for fat quantification, with Dixon sequences being the most useful. Different semiautomatic and automatic ASAT and VAT quantification methodologies have been proposed. In particular, the semi-automated quantification methodology used commercially through the cloud-based service AMRA R Researcher stands out due to its extensive validation in different studies. In the present work, a database made up of Dixon MRI sequences, obtained from children between 7 and 9 years of age, was studied. Applying a preprocessing to obtain what we call total intensity maps, a convolutional neural network (CNN) was proposed for the automatic quantification of ASAT and VAT. The quantifications obtained from the proposed methodology were compared with quantifications previously made through AMRA R Researcher. For the comparison, correlation analysis, Bland-Altman graphs and non-parametric statistical tests were used. The results indicated a high correlation and similar precisions between the quantifications of this work and those of AMRA R Researcher. The final objective is that the proposed methodology can serve as an accessible and free tool for the diagnosis, monitoring and prevention of diseases related to childhood obesity.Comment: 14 pages, 9 figures, 3 table

    Plasma transferrin and hemopexin are associated with altered Aβ uptake and cognitive decline in Alzheimer’s disease pathology

    Get PDF
    Background:Heme and iron homeostasis is perturbed in Alzheimer’s disease (AD); therefore, the aim of the studywas to examine the levels and association of heme with iron-binding plasma proteins in cognitively normal (CN),mild cognitive impairment (MCI), and AD individuals from the Australian Imaging, Biomarker and Lifestyle FlagshipStudy of Ageing (AIBL) and Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohorts.Methods:Non-targeted proteomic analysis by high-resolution mass spectrometry was performed to quantify relativeprotein abundances in plasma samples from 144 CN individuals from the AIBL and 94 CN from KARVIAH cohorts and21 MCI and 25 AD from AIBL cohort. ANCOVA models were utilized to assess the differences in plasma proteinsimplicated in heme/iron metabolism, while multiple regression modeling (and partial correlation) was performed toexamine the association between heme and iron proteins, structural neuroimaging, and cognitive measures.Results:Of the plasma proteins implicated in iron and heme metabolism, hemoglobin subunitβ(p= 0.001) was significantlyincreased in AD compared to CN individuals. Multiple regression modeling adjusted for age, sex, APOEε4 genotype, anddisease status in the AIBL cohort revealed lower levels of transferrin but higher levels of hemopexin associated with augmentedbrain amyloid deposition. Meanwhile, transferrin was positively associated with hippocampal volume and MMSE performance,and hemopexin was negatively associated with CDR scores. Partial correlation analysis revealed lack of significant associationsbetween heme/iron proteins in the CN individuals progressing to cognitive impairment.Conclusions:In conclusion, heme and iron dyshomeostasis appears to be a feature of AD. The causal relationship betweenheme/iron metabolism and AD warrants further investigation

    Steps on the Path to Clinical Translation: A workshop by the British and Irish Chapter of the ISMRM

    Get PDF
    The British and Irish Chapter of the International Society for Magnetic Resonance in Medicine (BIC-ISMRM) held a workshop entitled "Steps on the path to clinical translation" in Cardiff, UK, on 7th September 2022. The aim of the workshop was to promote discussion within the MR community about the problems and potential solutions for translating quantitative MR (qMR) imaging and spectroscopic biomarkers into clinical application and drug studies. Invited speakers presented the perspectives of radiologists, radiographers, clinical physicists, vendors, imaging Contract/Clinical Research Organizations (CROs), open science networks, metrologists, imaging networks, and those developing consensus methods. A round-table discussion was held in which workshop participants discussed a range of questions pertinent to clinical translation of qMR imaging and spectroscopic biomarkers. Each group summarized their findings via three main conclusions and three further questions. These questions were used as the basis of an online survey of the broader UK MR community

    Steps on the Path to Clinical Translation: A workshop by the British and Irish Chapter of the ISMRM

    Get PDF
    The British and Irish Chapter of the International Society for Magnetic Resonance in Medicine (BIC‐ISMRM) held a workshop entitled “Steps on the path to clinical translation” in Cardiff, UK, on 7th September 2022. The aim of the workshop was to promote discussion within the MR community about the problems and potential solutions for translating quantitative MR (qMR) imaging and spectroscopic biomarkers into clinical application and drug studies. Invited speakers presented the perspectives of radiologists, radiographers, clinical physicists, vendors, imaging Contract/Clinical Research Organizations (CROs), open science networks, metrologists, imaging networks, and those developing consensus methods. A round‐table discussion was held in which workshop participants discussed a range of questions pertinent to clinical translation of qMR imaging and spectroscopic biomarkers. Each group summarized their findings via three main conclusions and three further questions. These questions were used as the basis of an online survey of the broader UK MR community

    Impact of Resistant Starch on Body Fat Patterning and Central Appetite Regulation

    Get PDF
    Background: Adipose tissue patterning has a major influence on the risk of developing chronic disease. Environmental influences on both body fat patterning and appetite regulation are not fully understood. This study was performed to investigate the impact of resistant starch (RS) on adipose tissue deposition and central regulation of appetite in mice. Methodology and Principle Findings: Forty mice were randomised to a diet supplemented with either the high resistant starch (HRS), or the readily digestible starch (LRS). Using 1H magnetic resonance (MR) methods, whole body adiposity, intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured. Manganese-enhanced MRI (MEMRI) was used to investigate neuronal activity in hypothalamic regions involved in appetite control when fed ad libitum. At the end of the interventional period, adipocytes were isolated from epididymal adipose tissue and fasting plasma collected for hormonal and adipokine measurement. Mice on the HRS and LRS diet had similar body weights although total body adiposity, subcutaneous and visceral fat, IHCL, plasma leptin, plasma adiponectin plasma insulin/glucose ratios was significantly greater in the latter group. Adipocytes isolated from the LRS group were significantly larger and had lower insulin-stimulated glucose uptake. MEMRI data obtained from the ventromedial and paraventricular hypothalamic nuclei suggests a satiating effect of the HRS diet despite a lower energy intake. Conclusion and Significance: Dietary RS significantly impacts on adipose tissue patterning, adipocyte morphology and metabolism, glucose and insulin metabolism, as well as affecting appetite regulation, supported by changes in neuronal activity in hypothalamic appetite regulation centres which are suggestive of satiation
    corecore